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Krook collisional models of the kinetic susceptibility of plasmas
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~Received 23 January 2002; published 29 July 2002!

An assessment is made of Krook collisional models used to describe the kinetic behavior of collective
oscillations, i.e., when Landau damping and collisions must be considered, as is often the case for low-
frequency waves. The study focuses on an early energy-conserving model@B. D. Fried, A. N. Kaufman, and D.
L. Sachs, Phys. Fluids9, 292~1966!# that is shown to be identical to a more modern version used in drift-wave
stability studies@G. Rewoldt, W. M. Tang, and R. J. Hastie, Phys. Fluids29, 2893~1986!#. The inadequacy of
the simpler, and often used, nonconserving model is illustrated. Comparisons are established with recent
collisional studies of ion acoustic waves@V. Yu. Bychenkov, J. Myatt, W. Rozmus, and V. T. Tikhonchuk, Phys.
Plasmas1, 2419~1994!# and electron plasma waves@C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett.
83, 1974~1999!#. A connection is also established with contemporary studies of condensed matter and quantum
liquids @K. Morawetz and U. Fuhrmann, Phys. Rev. E61, 2272~2000!; 62, 4382~2000!#. A useful empirical fit
is found that corrects the Braginskii susceptibility to incorporate the kinetic behavior associated with the Krook
kinetic susceptibility.
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I. INTRODUCTION

One of the more difficult and frustrating problems e
countered in the theoretical study of plasmas is how to
scribe simultaneously the intrinsic kinetic behavior of t
medium and the effect of collisions. This situation is partic
larly of interest in the description of waves having relative
low frequencies~e.g., ion acoustic waves and Alfve´n waves!,
and in situations that lead to large collisionality, as may
the case at the edge of magnetically confined plasmas.

The two extreme limits of collisionless and highly coll
sional plasmas are very well understood. They both adm
compact analytical descriptions that allow the prediction a
interpretation of a wide class of phenomena having exp
mental relevance. For prevailing thermal equilibrium con
tions, in the collisionless regime the plasma susceptibilityx0
is represented by a universal function, namely, the plas
dispersion functionZ(s) @1#. The argument of this function
is the quantitys5v/(&ka), wherev, k represent the fre-
quency and wave number of the relevant fluctuation, and
quantity a is used in this study~for historical reasons! to
represent the appropriate thermal velocity.

In the opposite limit of large collisionality, and for fluc
tuations that satisfy the conditions@1, the transport formal-
ism developed by Braginskii@2# can be linearized to extrac
a collisional susceptibility, denoted here byxB . This quan-
tity depends ons as well as on the ratio ofnc /v, wherenc is
the Coulomb collision frequency. While this approach c
rectly includes the velocity dependence of the Coulomb c
lisions, it is constrained by the range of phase velocities
which it can be applied.

For situations that require the description of collecti
oscillations in which the value ofnc /v is significant and/ors
is not large, the predictions based onZ and xB , unfortu-
nately are not reliable. At this stage of development no s
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able generalization ofZ and/or xB has been obtained tha
continuously bridges the gap between these regimes. An
ample of a calculation of this type is the pioneering work@3#
of Kivelson and Dubois based on a Balescu-type kine
equation to obtain the susceptibility in the limit ofnc /v
!1 for ion acoustic waves.

Another example of a technique based on the kinetic
scription was introduced@4# by Koch and Horton. This ap-
proach retains the electron pitch-angle scattering in its ex
Fokker-Planck form. By suitable linearization, the suscep
bility can be calculated by a continued fraction method t
results in a generalization@5# of the Z function. A technical
shortcoming of this approach is that the convergence of
continued-fraction method becomes very slow for small v
ues of nc /v. Another hurdle in its application is that n
rigorous proof has been given for the analytic continuation
the equivalentZ function for purely damping problems
However, the method is well suited for the calculation
instabilities@5–8# that do not require this step.

To obtain semiquantitative descriptions of collisional sit
ations that are, at least, correct from the kinetic perspect
an extensive literature has developed in which the Krook@9#
collisional model is used. The appeal of this model is
algebraic simplicity, which in its more popular and rudime
tary form ~nonconserving! amounts to the replacement ofv
→v1 in in the argument of theZ function. Here we do not
attempt to single out particular studies, since it would m
the point, but rather just mention that this simple approac
commonly found in numerous and important applications
cluding studies of parametric instabilities, drift-wave inst
bilities, radio frequency plasma heating, and laser-plasma
teractions. The inadequacy of this approach was pointed
in condensed matter studies by Mermin@10# who removed
this defect by adding a term that relaxes the density matri
the local equilibrium distribution. This is equivalent to th
number-conservation procedure used by plasma researc
A quantum mechanical formulation of the improved proc
dure has been presented by Das@11# to examine the behaviodu
©2002 The American Physical Society07-1
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of Friedel oscillations in metals.
In a theoretical study@12# by Fried, Kaufman, and Sach

~FKS! in 1966, a derivation was presented of a more
vanced, energy-conserving Krook model that yields a reas
ably compact expression for the susceptibility in terms
combinations of the plasma dispersion functionZ. Since the
analytic properties of theZ function are well established, th
properties of the kinetic-collisional susceptibility are we
grounded and the expression reduces continuously to the
lisionless limit. This result does not suffer from the conv
gence problem associated with the continued-fraction
proach of Koch and Horton@4#. However, the FKS
calculation, being a Krook model, assumes that the collis
frequency is velocity independent, hence it misses subtle
tures unique to Coulomb collisions. It should also be m
tioned that number-conserving~but not energy-conserving!
Krook models of collective oscillations are presented
some textbooks@13,14#.

In surveying the literature~including textbooks! associ-
ated with the use of Krook models to describe wave phen
ena, we have been surprised to find that in spite of its e
introduction, the FKS expression forx has not been numeri
cally examined. In fact, we have identified that in 1986, R
woldt, Tang, and Hastie~RTH! introduced an energy
conserving Krook model to assess the role of collisio
models on calculations of drift-wave instabilities related
tokamaks, apparently unaware of the FKS early study.

The present numerical study is motivated by the lack o
definitive analytic solution for the unified description of k
netic phenomena and collisions, together with the comm
practice to use Krook collisional models to extract guidan
in wave-related problems. Specifically, we present here a
merical survey of the susceptibility obtained by FKS for t
more prominent collective oscillations encountered in
study of plasmas. In addition, we make comparisons of p
dictions based on the FKS model with contemporary stud
@15,16# of collisional effects on waves.

For completeness we mention that it is also possible
construct Krook collisional models that conserve moment
as is sketched in the textbook by Miyamoto@17#. However,
when applying the Krook models to describe the damping~or
growth! of waves associated with the loss of electron m
mentum, the standard practice~also followed in Miyamoto’s
text in describing drift waves! is to ignore this feature. Fo
this reason, the comparative studies presented in this p
do not include this option.

A recent study of the general response function for int
acting quantum liquids@18# has considered the limiting cas
of a nondegenerate plasma to explore the relative importa
of the number-, energy-, and momentum-conserving meth
on the shape of the plasma resonance. It is found by a
merical study of the type pursued in the present paper
the number-, and energy-conserving models shift the re
nance toward smaller frequencies while the incorporation
momentum balance diminishes this effect. Further insi
into the role of momentum conservation in one-compon
systems has been obtained in a study of the response o
teracting Fermi gases@19#.

The paper is organized as follows. Section II catalog
01640
-
n-
f

ol-
-
p-

n
a-
-

-
ly

-

l

a

n
e
u-

e
-
s

o

-

er

r-

ce
ds
u-
at
o-
f
t
t
in-

s

the analytic expressions for the susceptibility, which follo
from the various collisional models to be compared lat
Section III demonstrates the inadequacy of the noncons
ing model, exhibits the behavior of the energy-conserv
model, illustrates the identity between the FKS and RT
results, and introduces an empirical correction that brings
Braginskii result into close agreement with the energ
conserving Krook model. The effects of Krook-type col
sions on ion acoustic waves, electron plasma waves, and
fvén waves are presented in Sec. IV. A comparison is m
in Sec. V between the predictions of the energy-conserv
model and contemporary studies on ion acoustic waves
Bychenkov, Myatt, Rozmus, and Tikhonchuk@15# ~BMRT!
and on electron plasma waves by Ng, Bhattacharjee,
Skiff @16# ~NBS!. Conclusions are given in Sec. VI.

II. SUSCEPTIBILITY MODELS

For reference we reproduce in this section~without deri-
vation! the results previously obtained for the kinetic susce
tibility using different models for the Krook collision opera
tor. The interested reader should consult the origi
reference to obtain the details leading to these expressio

In the absence of collisions the kinetic susceptibility fo
lows from the general expression given in Landau’s lan
mark paper@20#, which when evaluated for a zeroth-ord
Maxwellian distribution function is completely determine
by the plasma dispersion function@1#

x05S kD

k D 2

@11sZ~s!#, ~1!

where kD[vp /a, and s[v/(&ka), with, a, the thermal
velocity of the species having plasma frequencyvp . Gener-
alization to multiple species can be achieved by summa
over the contribution of the individual species having a fo
similar to Eq.~1!.

For clarity, we emphasize that in the present notation
zeroth-order Maxwellian distribution function has the form

f 05
n0

~2pa2!1/2expS 2
v2

2a2D , ~2!

with n0 the density of particles, and the corresponding Deb
wave number iskD5vp /a. The connection to the tempera
ture T is througha5(T/m)1/2, wherem is the mass of the
species of interest. Also, the relationship to the dielec
coefficient ise511x.

The popular, nonconserving Krook model alluded to
the Introduction, results in

xNC5S kD

k D 2

@11sZ~j!#, ~3!

wherej[(v1 in)/(&ka). Heren is the Krook ‘‘collision
frequency,’’ which is not a well-defined quantity. Howeve
what is often done, for the sake of making progress in
absence of a general formalism, is to identifyn with the
Coulomb collision frequencync .
7-2
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A significant modification is obtained by imposing th
constraint in the Krook collision operator that the number
particles should be rigorously conserved@13,14#. This results
in a susceptibility

xC5S kD

k D 2 11jZ~j!

11gZ~j!
, ~4!

whereg5 in//(&ka).
By demanding that the Krook collisional model simult

neously conserve the number of particles and the ene
FKS @12# derived the following expression for the suscep
bility ~which we have independently rederived!:

xFKS5S kD

k D 2 11jZc

11gZc
, ~5!

in which the functionZc now plays a role analogous to theZ
function in the more limited, number-conserving model, a
where

Zc[
g~Z22j2!1@ 3

2 2gj~j22 1
2 !#Z

@~j42j21 5
4 !gZ1 3

2 1gj~j22 1
2 !#

, ~6!

in which the argument of all theZ functions is again the
quantityj.

In a study aimed at providing guidance in choosing mo
collision operators for toroidal-geometry kinetic calculation
RTH @7# also presented a derivation of a number- a
energy-conserving Krook model that results in the followi
susceptibility:

xRTH

5
sZ0@11 i 2

3 g~ 5
4 Z01Z42Z2!#2 i 2

3 gs~Z22 1
2 Z0!2

~11 igZ0!@11 i 2
3 g~Z42Z21 5

4 Z0!#1 2
3 g2~Z22 1

2 Z0!2
,

~7!

in which the functionsZn havej as their argument and ar
defined as

Zn~j!5
1

Ap
E

2`

`

du
un exp~2u2!

u2j
. ~8!

It should be mentioned that the general expression or
nally derived by RTH included the effects of density gra
ents and electromagnetic effects because they were inter
in applications that pertained to gradient-driven electrom
netic instabilities. The susceptibility given by Eq.~7! is ex-
tracted from their results by setting the diamagnetic f
quency v* to zero and dropping the contribution
proportional to the magnetic vector potentialAi , as is appro-
priate for the comparisons of interest in the present stud

It should be emphasized that it is not at all evident
comparing Eqs.~5! and~7! that the two independent studie
of energy-conserving Krook models yield the same res
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thus a comparative numerical study of these two express
seems warranted. The relevant result is presented in the
lowing section.

To complement the previous kinetic studies that attem
to incorporate collisional effects through Krook models, it
useful to consider the susceptibility that is obtained in
simplest linearization of the transport formalism develop
by Braginskii@2# for Coulomb collisions. Neglecting the ef
fect of heat diffusion, yields

xB5S kD

k D 2 1

S 12
2s2

b8 D2 i
2Gc~0.51!s2

b8

, ~9!

where b8511 2
3 (1.71)2 and Gc[nc /v, with nc the Cou-

lomb collision frequency, which is not an arbitrary quanti
as is the case for then entering in Eqs.~3!–~5! and ~7!.

Again, the expression given by Eq.~9! has a form quite
different from that of Eq.~5!, thus a numerical comparison i
also worthwhile.

III. NUMERICAL COMPARISON
OF COLLISIONAL MODELS

We compare first the various predictions for the susce
bility based on different Krook collisional models, i.e., th
quantitiesx0 , xNC, xO , xFKS, presented in Sec. II. The
comparison is achieved by displaying the dependence of
real and imaginary parts ofx as a function of the scaled
phase-velocity parameters5v/(&ka). Figure 1 displays
the behavior obtained for significant collisionality, i.e.,n/v
51.0. Two important features can be immediately extrac
from Fig. 1. One is that the predicted behavior for the no
conserving Krook model is topologically different from th
underlying collisionless result, both in the real and imagina
parts. In marked contrast, the conserving Krook models
seen to continuously evolve from the ideal collisionless
sult as the value of the collision frequency is increased. I
evident from this display that in this case the much-desi
simplicity achieved by using the nonconserving Kro
model leads to fundamentally incorrect behavior over
broad range of fluctuation wave numbers. In fact, Fig. 1 s
gests that in arriving at conclusions of experimental sign
cance, it is better to rely on the prediction of the collisionle
result rather than of the highly misleading nonconserv
Krook model.

The inadequacy of the nonconserving Krook model w
also deduced in the study@7# by RTH. They arrived at this
conclusion by examining the dependence on collision f
quency of the modes driven unstable by density gradien

The other important feature that is illustrated by Fig. 1
that the difference between the number-conserving, and
number-and energy-conserving models is relatively sm
Again, the stability study by RTH arrived at a similar co
clusion about the small improvement obtained by the inc
sion of the more advanced energy-conserving method.

It is valuable to point out that the contemporary study
Morawetz and Fuhrmann@18#, motivated by interacting
quantum liquids, contains two figures that exhibit behav
7-3
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similar to that displayed in Fig. 1. The approach in that stu
is based on the Lindhard random-phase approximation
the Skyrme-type functional. Yet when these authors take
limit of a one-component plasma the results are essent
those obtained from the Krook collisional models used
plasma physics.

The important trends identified in Fig. 1 become e
tremely pronounced in the regime of large collisionality, as
illustrated in Fig. 2 forn/v510. It is clear from Fig. 2 that
when the collisionality is large, the nonconserving mode
totally inadequate, and furthermore, there is no practical g
in implementing the energy-conserving constraint;xC should
be the quantity of choice in practical calculations. In fa
this was the approach followed by Hedrick, Leboeuf, a
Spong@8#, when performing a survey of the effect of coll
sional models on the stability of shear Alfve´n waves in stel-
larators. The present study validates that their neglect of
energy-conserving feature in the Krook model is well jus
fied in arriving at their conclusions.

Although we arrive at a perspective for the numb
conserving and energy-conserving Krook models, which i
full agreement with the conclusion obtained in the RT
study by completely different methods, the question rema
as to what is the relationship between the quantitiesxFKS and
xRTH given in Sec. II. To compare these two differen
looking results we exhibit the predicted behavior of the r
and the imaginary parts ofx as a function of the scaled phas
velocity s. The result is shown in Fig. 3 for the choicen/v

FIG. 1. Dependence on scaled phase velocity of the real~a! and
imaginary~b! parts of the kinetic susceptibility predicted for diffe
ent collisional models,n/v51. In the abscissa label, the square ro
only includes the 2 in this and following relevant figures.
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510. The solid curve corresponds toxRTH and the dark tri-
angles toxFKS. The triangle notation is chosen on purpose
separate the two results. As can be seen, the two quan
are, in fact, identical. This is comforting because they ha
the same physical origin, although the motivation leading
their study was quite different. For general perspective,
mention that the numerical difference between the two
sults is within machine precision and that we have verifi
the result over a broad range of values ofn/v. The quantities
xFKS andxRTH are identical.

The next comparison pertains to the behavior of the B
ginskii susceptibilityxB given by Eq.~9!. Using the same
format as in Figs. 1–3, we proceed to display in Fig. 4 t
predicted behavior for the real and imaginary parts ofxB
~dashed curve! andxFKS ~continuous curve! for n/v51.0. It
is seen from Fig. 4 that there exist pronounced differen
between these expressions in the region where kinetic eff
are most important, i.e., nears'1. In the spirit in which the
Krook model is used, namely, the introduction of a simp
collisional model to correct the intrinsic kinetic features, w
have been motivated to explore the opposite logic. The qu
tion is simply: can the BraginskiixB , which treats Coulomb
collisions appropriately, be corrected to exhibit the prop
kinetic features suggested by thexFKS in Fig. 4? To explore
this possibility we have undertaken a survey of empiri
numerical fits whose aim is to bring the Braginskii suscep
bility in close agreement withxFKS, simultaneously for the
real and imaginary parts, over a broad range of values ofn/v.

t

FIG. 2. Dependence on scaled phase velocity of the real~a! and
imaginary~b! parts of the kinetic susceptibility predicted for diffe
ent collisional models,n/v510.
7-4
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We have found that the relatively simple replacement
xB of nc by the expression

nc→~n/0.7s!exp~3s! ~10!

bringsxB in close agreement toxFKS as is illustrated in Fig.
5. In this figure the dashed curve now corresponds to
‘‘kinetically corrected’’ Braginskii susceptibility, while the
solid curve is the samexFKS shown in Fig. 4. In our numeri-
cal survey we find that as the value ofn/v is increased the
agreement between the two expressions improves sig
cantly.

IV. COLLISIONAL EFFECTS ON PROMINENT MODES

In this section we survey the predictions of the vario
Krook collisional models for the dispersion relation
prominent collective modes, i.e., ion acoustic waves, e
tron plasma waves, and shear Alfve´n waves. To isolate the
collisional effects, we apply the Krook collisional mod
only to the electron population since they constitute the s
cies that exhibits the most pronounced kinetic effects.
course, in many plasma situations of great interest the
contribution can also be overwhelmingly kinetic, but that
not the focus of the present study.

The dispersion relation used to isolate the effect of
Krook collisional models on ion acoustic waves is@21,22#

FIG. 3. Demonstration of the identity of the two independen
derived results for the susceptibility by FKS@Eqs.~5! and~6!# and
by RTH @Eq. ~7!# based on the energy-conserving model.~a! Real
part and~b! imaginary part;n/v510. The solid curve is RTH resul
and dark triangles are that of FKS.
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FIG. 4. Comparison of the dependences on scaled phase ve
ties for the susceptibilities predicted by Braginskii’s transport f
malism ~dashed curve! and the energy-conserving Krook mod
~solid curve!. ~a! Real part and~b! imaginary part;n/v51.

FIG. 5. Correction of Braginskii’s fluid susceptibility by
phase-velocity-dependent collision frequency, given by Eq.~10!,
brings close agreement with the energy-conserving Krook mod
7-5
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11x i1x j50, ~11!

wherex i is x0 of Eq. ~1! with ion parameters. In Eq.~11! the
x j of interest at this stage arex0 , xNC, andxFKS, sincexC
has already been shown to be not very different fromxFKS.

The results obtained from a numerical root-finding stu
in which k is a real, continuous parameter, andv is the
unknown complex frequency of the ion acoustic mode
shown in Fig. 6. The results correspond to high collisional
i.e., n/vpi510 to emphasize the effects. Herevpi is the ion
plasma frequency. In Fig. 6 the continuous curve correspo
to the collisionless result, the curve with the dark triangles
obtained with the nonconserving model, while the curve w
open squares follows from the energy-conserving mo
Both real and imaginary parts are scaled tovpi andk to the
Debye wave numberkD .

It is seen from Fig. 6~a! that the frequency of ion acousti
waves is independent of electron collisions, hence the c
sionless prediction is always excellent. The damping r
however, is sensitive to electron collisions in the wave nu
ber regionk/kD,0.5, as is illustrated in Fig. 6~b!. As k/kD
→1, however, the damping also becomes insensitive to e
tron collisions. Figure 6~b! corroborates the previous conclu
sion related to the inadequacy of the nonconserving Kr
model. It is seen that for ion acoustic waves this model p
dicts a lowering of the damping, while the energy-conserv
model illustrates that the damping is increased. It should

FIG. 6. Dispersion relation of ion acoustic waves predicted
different collisional models. The solid curve is the collisionle
case, the curve with dark triangles is the nonconserving model,
the curve with open squares is the FKS prediction.~a! Frequency
scaled tovpi and ~b! damping rate scaled tovpi . The collision
frequency isn/vpi510.
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mentioned that Koch and Horton@4# extracted an approxi-
mate analytical expression from their electron pitch-an
scattering model that also shows that such collisions enha
the damping of ion acoustic waves.

The next mode examined is the electron plasma osc
tions ~Langmuir waves!. Because there is a long-standin
tradition established by Jackson@23# in how to display the
frequency and damping rate of electron plasma waves in
same graph using a log-log scale, we proceed here to pre
the effect of collisions using such a format. The results
shown in Fig. 7, which displays four different curves. Two
them correspond to the collisionless result~the dashed curve
for Rev, the solid curve for Imv!, while the two others are
obtained usingxFKS for a collisionality n/vpe50.1, where
vpe is the electron plasma frequency. The dashed curve w
dark triangles correspond to the Rev with collisions and the
solid curve with dark diamonds to Imv with collisions. The
first impression obtained from Fig. 7 is that the Imv pre-
dicted with the energy-conserving model exhibits a contin
ous merging with the collisionless damping rate ask in-
creases. This is a highly desirable feature of a model
incorporates collisional and kinetic effects. At this level
collisionality it is seen that fork/kD,0.2 the enhanced col
lisional damping overwhelms Landau damping, but ask/kD
→1 the strong collisionless dissipation~which in this regime
is not proportional to] f 0 /]v! takes over. In the extremely
large wave number limit the energy-conserving collisio
cause a slight decrease in the damping and an assoc
increase in the frequency.

We note that the prediction of the nonconserving mode
not included in Fig. 7 because it would be too confusing. W
simply state that we have examined its effect, and find tha
a more pronounced manner than for the ion acoustic wa
it also leads to unacceptable behavior.

The shear Alfve´n wave of small transverse scale~on the
order of the electron skin depth! is a mode of considerable
interest@24–26# at the present time. Because of its relative

y

nd

FIG. 7. Dispersion relation of electron plasma waves using
log-log display format introduced by Jackson in which the real a
imaginary parts ofv are scaled tovpe and the wave numberk is
scaled to the Debye wave number. The collisionless results co
spond to the simple dashed and solid curves. The dashed curve
the dark triangles is the real part for the energy-conserving Kr
model and the curve with the dark diamonds is the correspond
imaginary part forn/vpe50.1.
7-6
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low frequency this mode is a suitable candidate for a desc
tion based on the Krook collisional model. In the limit o
cold ions the relevant dispersion relation takes the form

ki
25S v

vA
D 2F12S k'c

v D 2 1

x j
G , ~12!

wherevA is the Alfvén speed,c is the speed of light, andx j
is the electron susceptibility given by one of the expressi
presented in Sec. II. In this notationki represents the wav
number along the confining magnetic field, andk' the com-
ponent across the field. Because of the unique topolog
this mode, it is more informative to examine the depende
of the frequency and damping coefficient on the strength
the collisionality for fixed values ofk' andki .

Figure 8 exhibits the dependence of Rev and Im v ob-
tained numerically as the value of the collision frequency
increased inxNC and xFKS. All the quantities in Fig. 8 are
scaled to the ion cyclotron frequencyvci . For these results
the parameters arek'c/vpe51 ~yielding strong parallel elec
tric fields!, kia/vci50.2 ~resulting in frequencies below
vci!, and relatively cold electrons~the inertial regime! in
which the parameterb[(a/vA)250.1. In Fig. 8 the solid
curve corresponds to the energy-conserving model and
dashed curve to the nonconserving model. It is quite evid
in this case thatxNC gives rise to rather bizarre behavior asn

FIG. 8. Dependence on scaled collision frequency~to vci! of the
dispersion relation of shear Alfve´n waves of small transverse sca
(k'c/vpe51) and for cold ions. The parallel wave number
kia/vci50.2 for a scaled electron plasma betab5(a/vA)250.1
~inertial regime!. The real part~a! and imaginary part~b! are scaled
to vci . The dashed curve is the nonconserving model and the s
curve is the energy-conserving model.
01640
p-

s

of
e
f

s
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nt

increases. The appropriate trend displayed byxFKS is that the
frequency exhibits a relatively small change, while t
damping coefficient experiences a linear increase leadin
an enhancement by a factor of two over the collisionle
damping in the range ofn examined.

The complementary behavior obtained as the scaled e
tron b is increased tob̄51.0, is displayed in Fig. 9. In this
case, the collisionless result corresponds to a lower
quency and stronger damping, but the same trends obta
for the b̄51.0 case are seen for the two collisional mode
Again, the energy-conserving model predicts a monoto
increase in the damping coefficient that roughly doubles
value at a collisionality level ofn/vci50.3.

V. COMPARISON TO CONTEMPORARY STUDIES

In this section we compare the predictions of the ener
conserving Krook model to two contemporary studies
which the issue of modeling collisional effects on wa
properties is emphasized. One pertains to ion acoustic wa
and the other to electron plasma waves.

In 1994, Bychenkov, Myatt, Rozmus, and Tikhonchu
~BMRT! @15# investigated a quasihydrodynamic descripti
of ion acoustic waves in a collisional plasma. In their a
proach the ion response is essentially hydrodynamic an
formulation based on a generalized 21-moment closure
sults in a suitable ion-fluid susceptibilityx i , which is used to
calculate the ion acoustic dispersion relation. The descrip
used for the electron response, however, is not so straigh

lid

FIG. 9. The same information presented in Fig. 8 but w

scaled electron betab̄5(a/vA)251.0, corresponding to a strongl
kinetic regime of the shear Alfve´n mode.
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ward because for this mode, the electrons behave kinetic
To handle this issue BMRT constructed a model that mi
an electron collisional heat conductivity with a heuris
form of Landau damping.

Because in the BMRT study the electron population
treated in a special manner to merge kinetic and collisio
effects, it is suggestive that it would be useful to comp
their results to the energy-conserving Krook model in wh
the kinetic behavior is automatically included. To impleme
a suitable comparison we replace thexe used in the BMRT
study byxFKS but retain the 21-momentx i that they derived.
From these two susceptibilities we then solve numerica
for the complex frequencyv as a function of the real wav
numberk.

Figure 10 displays the results obtained for the choice
ion collision frequencyn i5n510vpi . For singly ionized
ions, this choice corresponds to an electron to ion temp
ture ratioTi /Te5(M /m)1/3, whereM andm refer to the ion
and electron masses, respectively. This in turn implies a
gime of the ion acoustic waves in which the ions beha
hydrodynamically and is thus consistent with the BMRT d
scription. The choice of collisionality also permits a cro
comparison to the results of Fig. 6 in which the ion behav
is collisionless. In Fig. 10 the continuous curve correspo
to the BMRT prediction while the curve with solid squares
obtained usingxFKS. It is seen from Fig. 10~a! that the fre-
quency of the mode is identical for both methods. This i
plies that the fluid-electron model introduced by BMRT do
an excellent job in describing the effective ‘‘electron pre

FIG. 10. Comparison of the prediction of the energy-conserv
model ~curve with dark squares! and results of the BMRT study
@13# ~solid curve! for the dispersion relation of ion acoustic wave
Real part~a! and imaginary part~b! are scaled tovpi . Collisionality
is n5n i510vpi corresponding to theTe /Ti.10 regime.
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sure’’ over a wide range of wave numbers. From Fig. 10~b! it
is found that the energy-conserving Krook model gives
larger ~less than a factor of 2! damping fork/kD,1.0, but
the overall functional dependence predicted by the two m
els is quite similar. In particular, fork/kD.1.5 the two mod-
els merge into each other, again confirming that the met
used by BMRT to incorporate electron Landau damp
through a fluid response approximates the actual kinetic
sponse quite well.

From the cross comparison between Figs. 10~a! and 6~a! it
can be deduced that the frequency of ion acoustic wave
very robust to the inclusion of collisions of any form. Th
quantity is intrinsically determined by the collisionless k
netic response of the electrons. From the behavior see
Figs. 10~a! and 6~b! one deduces that for the level of coll
sionality examined~i.e., n i /vpi510! the dissipation due to
ion collisions plays a significant role and leads to an e
hancement over the collisionless prediction in the wave nu
ber range ofk/kD,1 by as large as a factor of 3.

In 1999, Ng, Bhattacharjee, and Skiff~NBS! @16# pub-
lished a study in which they revisited the damping of ele
tron plasma oscillations in a weakly collisional plasma us
the model collision operator introduced by Lenard and Be
stein @27#. The study uses a procedure based on a comp
set of Hermite polynomials to derive an infinite determina
from which a recurrence relation is obtained that yields
discrete spectrum of values for the frequency and dampin
the electron plasma oscillations. The study reports on
results in the form of a table for the real and imaginary pa
of the scaled eigenvalues for different values of the sca
collision frequency covering four orders of magnitude.

Since the NBS study utilizes a model for the merging
kinetic and collisional effects that is considerably differe
from the approach based on the energy-conserving Kr
model, it is of interest to explore how the discrete mod
reported by NBS compare to the roots obtained for elect
plasma waves based onxFKS.

To make the comparison meaningful we utilize the sa
notation and scaled variables introduced by NBS. They
fine the scaled~complex! frequency asV[v/(&ka) and
the scaled collision frequency asm[n/(&ka). In addition,
they introduce the inverse, scaled wave number as the
rametera[(kD /k)2. The goal is to identify how the value o
V varies asn is changed. In Table II of Ref.@16# NBS
present results fora59.0.

With the previous translations in notation, we proceed
solve for the roots predicted usingxFKS and varyingn in
very small steps over a very wide dynamic range that
quires a semilog display. The results of this numerical sur
are shown in Fig. 11, in which, again we duplicate the NB
notation ofVT[Rev and V i[Im v. The continuous solid
curve corresponds to the roots of the energy-conserv
Krook model while the dark triangles are the discrete mo
reported by NBS. It is seen that the discrete modes found
the NBS formalism closely overlap the continuous roots p
dicted by the energy-conserving Krook model.

At this stage we refrain from speculation about the me
ing of the agreement displayed in Fig. 11, but from the p
spective of the present study we conclude that the ene

g

7-8



et
th
he

ur
e
e
rl

uf
h
dy
t
o
al

l.
ey
at
p-
le
g
ir
le
e

ver,
ver-

-
ing

s to
tity

nse

e-
tic
e-
ok

son
ble
om
ing

ing

is
ced
ee-
le-
na-
the

ma
ing

ifi-
he
rve
in

he
ing
ns.
ed
s
and
n-

the
de-

ri-
and
is
nd
of

ve

e-

r.

in
-

-

KROOK COLLISIONAL MODELS OF THE KINETIC . . . PHYSICAL REVIEW E66, 016407 ~2002!
conserving Krook model is capable of reproducing a vari
of predictions based on seemingly different collisional me
ods that incorporate the intrinsic kinetic behavior of t
plasma.

VI. CONCLUSIONS

This numerical study has aimed to elucidate some feat
related to the usage of Krook collisional models in the d
scription of kinetic wave phenomena, which have not be
widely discussed. The study focused primarily on an ea
formulation of an energy-conserving model by Fried, Ka
man, and Sachs@12# ~FKS!, which has not received muc
attention. In fact, twenty years after the original FKS stu
Rewoldt, Tang, and Hastie@7# ~RTH! were motivated, as par
of a larger investigation, to examine the role of this type
collision model and obtained an expression that algebraic
differs significantly from the FKS form. In this work we
have illustrated that these two developments are identica

A strong conclusion that follows from the present surv
is that the nonconserving Krook model is entirely inadequ
for the prediction of collisional effects on kinetic wave pro
erties. Another valuable conclusion is that the partic
conserving and the simultaneously particle- and ener
conserving models do not differ significantly in the
predictions. Thus, in practical situations in which a simp
and more compact formulation is desirable, the numb

FIG. 11. Comparison of the prediction of the energy-conserv
Krook model~continuous solid curve! to prediction of discrete elec
tron plasma modes~dark triangles! according to the NBS study
@14#. The notation used is that introduced in Ref.@14#, V
[v/(&ka), m[n/(&ka). Note that the scaled collision fre
quency is varied logarithmically over a large dynamic range.
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conserving approach can be used with confidence. Howe
it should not be extrapolated that the number-conserving
sion is suitable for all applications. If heat transport is im
portant, then energy-, momentum-, and number-conserv
are required.

The robustness of the frequency of ion acoustic wave
various collision models has been documented. This quan
is essentially determined by the collisionless kinetic respo
of the electrons.

An empirical fit has been found in which the simple r
placement of the Coulomb collision frequency by a kine
factor brings the Braginskii susceptibility into close agre
ment with that obtained in the energy-conserving Kro
model.

Based on the classic plot format introduced by Jack
@23# for electron plasma waves, a pedagogically valua
presentation that illustrates the continuous transition fr
collisional to collisionless behavior has been obtained us
the energy-conserving model.

A comparison of the predictions of the energy-conserv
model to the study by BMRT@15# of ion acoustic waves in a
collisional plasma yielded useful insight. One perspective
that the heuristic model for the electron response introdu
by BMRT to incorporate Landau damping shows good agr
ment with the energy-conserving Krook model. The comp
mentary perspective is that in attacking problems of this
ture, the use of the heuristic model can be replaced by
suitable Krook model.

A surprising result has been obtained for electron plas
waves in comparing the predictions of the energy-conserv
model to a recent study by NBS@16#, in which a set of
discrete eigenmodes was identified. In spite of the sign
cantly different collisional models used, it is found that t
eigenvalues predicted by NBS lie on the continuous cu
predicted by the Krook model over a very large range
variation of the collision frequency. This again illustrates t
usefulness of the energy-conserving model in describ
subtle features that mix the kinetic response and collisio

It is noteworthy that contemporary studies of condens
matter and quantum fluids@18,19# are addressing analogou
issues to those considered in this plasma-oriented study
that similar results are being obtained. Hopefully, the co
nections mentioned in this study will bring awareness of
commonality of approaches developed independently to
scribe the different states of matter.

In summary, this study provides through specific nume
cal comparisons a useful perspective on the limitations
capabilities of the various Krook collisional models. Th
information should be useful to future studies that try to fi
a compromise in handling the yet unresolved problem
how to unify the kinetic response and collisions in wa
phenomena.
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